A pr 2 00 5 Schrödinger Flow Near Harmonic Maps Stephen Gustafson

نویسندگان

  • Kyungkeun Kang
  • Tai-Peng Tsai
چکیده

Abstract For the Schrödinger flow from R × R to the 2-sphere S, it is not known if finite energy solutions can blow up in finite time. We study equivariant solutions whose energy is near the energy of the family of equivariant harmonic maps. We prove that such solutions remain close to the harmonic maps until the blow up time (if any), and that they blow up if and only if the length scale of the nearest harmonic map goes to zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schrödinger flow near harmonic maps

For the Schrödinger flow from R2 × R+ to the 2-sphere S2, it is not known if finite energy solutions can blow up in finite time. We study equivariant solutions whose energy is near the energy of the family of equivariant harmonic maps. We prove that such solutions remain close to the harmonic maps until the blowup time (if any), and that they blow up if and only if the length scale of the neare...

متن کامل

Asymptotic Stability of Harmonic Maps under the Schrödinger Flow

For Schrödinger maps fromR2×R+ to the 2-sphere S2, it is not known if finite energy solutions can form singularities (blow up) in finite time. We consider equivariant solutions with energy near the energy of the two-parameter family of equivariant harmonic maps. We prove that if the topological degree of the map is at least four, blowup does not occur, and global solutions converge (in a disper...

متن کامل

A pr 2 00 9 ASYMPTOTIC STABILITY , CONCENTRATION , AND OSCILLATION IN HARMONIC MAP HEAT - FLOW , LANDAU - LIFSHITZ

We consider the Landau-Lifshitz equations of ferromagnetism (including the harmonic map heat-flow and Schrödinger flow as special cases) for degree m equivariant maps from R to S. If m ≥ 3, we prove that near-minimal energy solutions converge to a harmonic map as t → ∞ (asymptotic stability), extending previous work [11] down to degree m = 3. Due to slow spatial decay of the harmonic map compon...

متن کامل

Asymptotic Stability , Concentration , and Oscillation in Harmonic Map Heat - Flow , Landau - Lifshitz , and Schrödinger Maps on R 2

We consider the Landau-Lifshitz equations of ferromagnetism (including the harmonic map heat-flow and Schrödinger flow as special cases) for degree m equivariant maps from R2 to S2. If m ≥ 3, we prove that near-minimal energy solutions converge to a harmonic map as t → ∞ (asymptotic stability), extending previous work (Gustafson et al., Duke Math J 145(3), 537–583, 2008) down to degree m = 3. D...

متن کامل

Global Questions for Map Evolution Equations

Just as the harmonic map equation is a geometric analogue of the classical Laplace equation for harmonic functions, so the classical linear evolution PDEs, the heat, wave, and Schrödinger equations, have geometric “map” analogues: the harmonic map heat-flow, wave map, and Schrödinger map equations. These equations are nonlinear when the target space geometry is nontrivial. Quite remarkably, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005